A General Framework for a Class of First Order Primal-Dual Algorithms for Convex Optimization in Imaging Science

نویسندگان

  • Ernie Esser
  • Xiaoqun Zhang
  • Tony F. Chan
چکیده

We generalize the primal-dual hybrid gradient (PDHG) algorithm proposed by Zhu and Chan in [M. Zhu, and T. F. Chan, An Efficient Primal-Dual Hybrid Gradient Algorithm for Total Variation Image Restoration, UCLA CAM Report [08-34], May 2008] to a broader class of convex optimization problems. In addition, we survey several closely related methods and explain the connections to PDHG. We point out convergence results for a modified version of PDHG that has a similarly good empirical convergence rate for total variation (TV) minimization problems. We also prove a convergence result for PDHG applied to TV denoising with some restrictions on the PDHG step size parameters. It is shown how to interpret this special case as a projected averaged gradient method applied to the dual functional. We discuss the range of parameters for which these methods can be shown to converge. We also present some numerical comparisons of these algorithms applied to TV denoising, TV deblurring and constrained l1 minimization problems.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Primal-dual path-following algorithms for circular programming

Circular programming problems are a new class of convex optimization problems that include second-order cone programming problems as a special case. Alizadeh and Goldfarb [Math. Program. Ser. A 95 (2003) 3-51] introduced primal-dual path-following algorithms for solving second-order cone programming problems. In this paper, we generalize their work by using the machinery of Euclidean Jordan alg...

متن کامل

An optimal first-order primal-dual gap reduction framework for constrained convex optimization

We introduce an analysis framework for constructing optimal first-order primal-dual methods for the prototypical constrained convex optimization template. While this class of methods offers scalability advantages in obtaining numerical solutions, they have the disadvantage of producing sequences that are only approximately feasible to the problem constraints. As a result, it is theoretically ch...

متن کامل

Gradient Primal-Dual Algorithm Converges to Second-Order Stationary Solutions for Nonconvex Distributed Optimization

In this work, we study two first-order primal-dual based algorithms, the Gradient Primal-Dual Algorithm (GPDA) and the Gradient Alternating Direction Method of Multipliers (GADMM), for solving a class of linearly constrained non-convex optimization problems. We show that with random initialization of the primal and dual variables, both algorithms are able to compute second-order stationary solu...

متن کامل

Generalization of Primal-Dual Interior-Point Methods to Convex Optimization Problems in Conic Form

We generalize primal-dual interior-point methods for linear programming problems to the convex optimization problems in conic form. Previously, the most comprehensive theory of symmetric primal-dual interior-point algorithms was given by Nesterov and Todd 8, 9] for the feasible regions expressed as the intersection of a symmetric cone with an aane subspace. In our setting, we allow an arbitrary...

متن کامل

An Interior Point Algorithm for Solving Convex Quadratic Semidefinite Optimization Problems Using a New Kernel Function

In this paper, we consider convex quadratic semidefinite optimization problems and provide a primal-dual Interior Point Method (IPM) based on a new kernel function with a trigonometric barrier term. Iteration complexity of the algorithm is analyzed using some easy to check and mild conditions. Although our proposed kernel function is neither a Self-Regular (SR) fun...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • SIAM J. Imaging Sciences

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2010